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Abstract—Load curve data refers to the electric energy con-
sumption recorded by meters at certain time intervals at delivery
points or end user points, and contains vital information for
day-to-day operations, system analysis, system visualization,
system reliability performance, energy saving and adequacy
in system planning. Unfortunately, it is unavoidable that load
curves contain corrupted data and missing data due to various
random failure factors in meters and transfer processes. This
paper presents the B-Spline smoothing and Kernel smoothing
based techniques to automatically cleanse corrupted and missing
data. In implementation, a man—-machine dialogue procedure is
proposed to enhance the performance. The experiment results
on the real British Columbia Transmission Corporation (BCTC)
load curve data demonstrated the effectiveness of the presented
solution.

Index Terms—Load management, load modeling, power sys-
tems, smoothing methods, power quality.

1. INTRODUCTION
A. Background

OAD CURVE data refers to the electric energy consump-
L tion recorded by meters at certain time intervals at de-
livery points or end user points. Load curve data is the “heart-
beat” of electricity systems and is one of several most important
data sets collected and retained in utilities. The analysis of load
curve data would greatly improve day-to-day operations, system
analysis, system visualization, system reliability performance,
energy saving, and accuracy in system planning [1]. Two key
features in the global vision of smart grid [2] are self-healing
from power disturbance events and enabling active participa-
tion by consumers in demand response. The collection of valid
load curve data is critical for supporting decision making in a
smart grid system. For example, smart meters are an important
initiative in smart grid and the quality of data is essential for the
success of smart meters.

Collecting all load data accurately in fine granularity is a chal-
lenging and costly task. There is often missing and corrupted
data in the process of information collection and transfer. This
is caused by various reasons including meter problems, commu-
nication failures, equipment outages, lost data, and other factors.
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Possible other reasons include unexpected interruption or shut-
down in electricity use due to strikes, unscheduled maintenance,
and temporal close of production lines. Such events cause a sig-
nificant deviation in load and do not repeat regularly, resulting
in load data being unrepresentative of actual usage patterns. The
term corrupted data refers to the data that significantly deviates
from its regular patterns.

Poor quality load curve data can lead to misleading data anal-
ysis and incorrect decision making. It is important that corrupted
data is identified and corrected. Currently, most utilities handle
corrupted data manually in an ad hoc manner. This approach ac-
tually does not work, particularly after considerable smart me-
ters come into place, as it is impossible to handle a huge data
pool using a manual process.

In this paper, novel statistical approaches are presented to au-
tomatically detect corrupted data and replace it with the best es-
timated data. The accuracy of the detection is also quantified
using a confidence interval. Missing data is treated as a spe-
cial case of corrupted data. This problem is referred to as the
load cleansing problem. There are two challenges in resolving
this problem. First, if a relatively large portion of data is cor-
rupted or missing, most standard statistical methods cannot be
applied. Second, due to the uncertainty in electricity consump-
tion, randomness of outage events, and dynamism of customers,
it is difficult to judge whether a relatively large deviation repre-
sents corrupted data or an underlying change in data patterns.

The contributions of this work are as follows. First, two types
of data cleansing problems for load curve data are formalized in
Section II, which are called locally corrupted data detection and
globally corrupted data detection, respectively. Though related,
these problems are different from the traditional outlier detection
and load forecasting problems. Second, a solution is presented by
modeling the underlying structure of load curve data and using
specific nonparametric regression techniques in Section III. This
solution provides a common basis for detecting corrupted data,
estimating replacing data, and deriving the confidence level for
detection. The solution deals with both locally and globally cor-
rupted data in a uniform way and is robust to a relatively large
portion of missing data. Third, the implementation techniques are
proposed in Section IV, including an incremental training algo-
rithm to incorporate the user feedback at an early stage with min-
imumuser effort. Finally, the proposed solutionis tested using real
British Columbia Transmission Corporation (BCTC) load curve
datain Section V. The results demonstrated the effectiveness and
high performance of the proposed solution.

B. Related Work

A closely related area to the load cleansing problem is outlier
detection, which has been extensively studied in data mining
and statistics research.
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In the domain of data mining, a broad spectrum of techniques
have been developed to detect outliers, among which, the prox-
imity-based techniques such as k-nearest neighbor classification
[3], k-means clustering [4], and the neural network methods
such as RNNs [5] are frequently used [6]. However, most of
these techniques are designed for structured relational data in-
stead of time series. When dealing with outliers in time se-
ries, data mining researchers are more interested in determining
whether a whole time series is abnormal with respect to a ref-
erence of “normal” time series (multiple time series). For ex-
ample, the techniques in [7]-[11] compute an anomaly score
of a coming time series based on its distance to the referenced
normal time series. These elegant methods are not applicable to
our problem because there is no “normal” time series for refer-
ence. Moreover, our goal is to identify corrupted data within a
single long time series.

Keogh et al. have developed a suite of techniques to detect
“discords” in a time series [12]-[15], that is to identify the
time series subsequence that is maximally different from all the
rest of the time series subsequences. These techniques are not
suitable for solving our problem. First of all, they require the
prior knowledge on the length of the sliding window whereas
the lengths of corrupted data in load curve are uncertain and
varied. Secondly, the discords are not necessarily corrupted
data or outliers for load curve data and vice versa. Consider
a load curve with an obvious increasing trend. Subsequences
with larger values tend to have larger distances to the rest sub-
sequences, therefore, are more likely to be detected as discords.
But such subsequences can be normal because a load curve
typically has an increasing trend over time.

Outlier detection in time series has also been studied in the
field of statistics [23]. Well known statistical tests for outliers
include Z-value, box plot, Rosner test, Dixon test, and Grubbs
test. A common assumption for these test methods is the normal
distribution of data [16], which is invalid for load curve data.
Many other methods [17], [18], [24]-[26] are based on the
ARMA model, which impractically assumes that the time series
is stationary. Particularly, the traditional time series methods
including the ARMA model cannot handle a relatively large
portion of missing data.

The time series techniques such as ARMA are often used for
time series forecasting [27] or load forecasting [29]. These is-
sues are different from the load cleansing problem considered
here. In load forecasting, historical loads are used to forecast the
load at a future time point. In load cleansing, historical loads are
used to detect corrupted data at a particular historical time point
and decide an appropriate replacement of the corrupted data. In
other words, load forecasting trusts all historical data whereas
load cleansing deals with historical corrupted data and their re-
placing data. In addition, the cleansed data will greatly improve
the quality of load forecast.

II. PROBLEM DEFINITION

A load curve is a time series where load values are collected
at a certain time frequency such as every 5 min or hourly. Typ-
ically, load curve data follows certain patterns and behaves a
daily, weekly, and seasonal periodicity with an increasing ten-
dency over years. It is also influenced by random factors such as

IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 2, SEPTEMBER 2010

outages, meter failures, communication interruptions or errors,
and dynamism of customers. As a result, a load curve consists
of not only white noises but also some corrupted data.

Given a time series representing a load curve, the data
cleansing includes two tasks: detecting corrupted data and
replacing it with representative estimated data. In the data
cleansing, the regular patterns of load curve, for example,
periodicity, trends, and autocorrelations, must be kept while
assuring the quality of replacing data. Missing data can be
considered as a special case of corrupted data where a load
value of zero is collected. The following two types of corrupted
data, namely, locally corrupted data and globally corrupted
data, are considered.

Definition 1: Consider a time series {(¢;,y;)}", where y;
is the data (observation) at the time ¢;. A data point is locally
corrupted if it deviates markedly from the local patterns of the
time series. ]

Definition 2: Consider a time series {(¢;,v;)}"_;, where y;
is the data (observation) at the time ¢;. A data point is globally
corrupted if it deviates markedly from the global patterns of the
time series. ]

Observations are not necessarily equally spaced in time di-
mension because some of them may be missing. Also, the de-
tection should focus on a region which contains multiple nearby
points that markedly deviate from the local or global patterns,
but not on each individual corrupted data point. Therefore, the
terms locally corrupted region and globally corrupted region are
used in the paper. A key to the detection of corrupted data is the
notion of “deviating markedly” from the patterns. The presented
solution is to establish the expected value range of normal data
at each time point, which is called the confidence interval at a
given confidence level. With the confidence interval, nearby cor-
rupted data points, which locate outside the confidence interval
(deviating markedly from the patterns), can be grouped into re-
gions.

Fig. 1(a) shows two locally corrupted regions and Fig. 1(b)
shows three globally corrupted regions indicated by circles. The
y-axis represents the load data by hourly energy consumption
(kWh). The x-axis represents the time dimension in the unit of
hours. In Fig. 1(b), the solid line represents global trends of
the load data and the two dashed lines represent the confidence
interval for normal load data. Based on the confidence interval,
three groups of points circled are identified and represent three
globally corrupted regions since most points in these groups are
outside the interval.

III. PROPOSED SMOOTHING METHODS

The essence of the proposed solution to the detection of cor-
rupted data is to model the intrinsic patterns or structure of load
data. The model found can be used to judge the presence of ab-
normal deviations from the patterns, and thus to identify cor-
ruption of data. Assume that n data points {(¢;,y;)}", of a
load curve have been collected. The underlying data generation
process is modeled as a continuous function [19]

yi = m(t;) + & (1)
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where y; is the data value at time ¢;, m(t) is the underlying func-
tion and ¢; is the error term. It is assumed that the error term ¢;
is normally and independently distributed with the mean of zero
and constant variance 2. Our main task is to find an appropriate
estimate of the function m(t), namely r7:(¢), using the collected
load data as a sample of observations. Then the point-wise con-
fidence interval can be built based on the estimate of m(¢). A
data point is judged as corrupted if it locates outside the confi-
dence interval. Corrupted data at time ¢; will be replaced by the
estimated value 772(;).

A smoothing parameter is used to control the curve smooth-
ness. A smoother curve m(t) tends to model global patterns
since it is less sensitive to local deviations, whereas a rougher
curve m(t) is more capable of modeling local patterns. Different
settings of the smoothing parameter can be chosen to model
global or local patterns.

A. Nonparametric Regression

The aim of a regression analysis is to estimate the un-
known response function (or curve) m(t) from the observed
data {(t;,y:;)}"_ ;. This approximation procedure is called
smoothing. The smoothing task can be done essentially in two
ways: parametric regression and nonparametric regression.
The former assumes that the curve m(t¢) has some prespecified
functional form, whereas the latter does not. The parametric
model is sufficient if the structure of the curve is obvious, such
as a straight line. However, a preselected parametric model is
too restricted for unknown or more complex relationships. In
this work, the nonparametric regression is used because load
curve data does not follow a simple and known relationship.

The basic idea of nonparametric smoothing is the local aver-
aging procedure. Specifically, the curve can be estimated by

n(t) = b)

Sk

Z Wi(t)y:
i=1

where {W;(t)}7_; denotes a sequence of weights which de-
pend on the whole vector {¢;}" ;. Among most well accepted
nonparametric smoothing techniques are Spline smoothing and
Kernel smoothing. In this paper, the B-Spline smoothing [20],
which is commonly used in the Spline smoothing family, and the
popular Nadaraya—Watson estimator in the Kernel smoothing
family [19] are used.
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Fig. 1. Examples of locally and globally corrupted data (regions). (a) Locally corrupted data. (b) Globally corrupted data.
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Fig. 2. B-Spline basis functions.

B. B-Spline Smoothing

1) Basis Function System: To estimate the function m(t),
the B-Spline smoothing makes use of a basis function system
consisting of a set of known basis functions {¢x(¢)}X ;| that
are mathematically independent of each other. The idea is to
approximate the function m(¢) by taking a weighted sum or
linear combination of a sufficiently large number K of basis
functions ¢y (?)

K
m(t) = ckdi(t) 3
k=1
or in the form of vectors
m(t) = & §(1) @
where @ = (c1,...,cx) is the coefficient vector and G(t) =

(41(t), ..., ¢ (t)) is the vector of basis functions. There are
different basis function systems. The B-Spline basis system de-
veloped by de Boor [21] is adopted. Fig. 2 shows how a B-Spline
basis system looks like. Each function ¢ (¢) in a B-Spline basis
system is positive over a short interval of time and is zero in the
rest. This property, called compact support property, guarantees
that mainly local information is considered when estimating the
coefficients c.

2) Estimating Coefficients: To estimate the coefficients ¢
from the observations {(t;, ;) }?_;, we define an n by K matrix

p1(t1)  @a(t) bx(t1)
p1(t2)  ¢a(t2) ¢x(t2)

= N N . (5)
G1(tn)  P2(tn) dr(tn)
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where ®[i,j] = ¢;(t;) represents the value of the jth basis
function at time ¢;. By treating all vectors as column vectors, the
function values mn(t) at time (¢, . . . , t,) are given by 17, = ®c.
A simple smoother could be obtained if the coefficients ¢ are
determined by minimizing the sum of squared error (SSE) as

n K 2
SSE= [yj -> Ck¢>k(tj)] (6)
j=1 k=1
or in the form of vectors
SSE = (7 — #0)" (7 — ®0) (7

where ¥ is the vector form of {(¢;,y;)}" ;. The SSE can al-
ways be decreased by using enough number of basis functions,
to make the fitted curve go through all data points. However, a
larger K can lead to more risk of overfitting, i.e., the noise that
we wish to remove has more chance to be fitted.

To solve the overfitting problem, the coefficients can be
estimated by minimizing the penalized sum of squared errors
(PENSSE) as follows:

PENSSE,) = SSE + A\ x PENy (%) 8)
where ) is the smoothing parameter and PEN,(z) is the rough-

ness measure which is defined as the integral of square of second
derivative or curvature of the curve m(t)

PEN,(t) = / [D2m(t)]2dt

JERE O
' Re 9

where

R= / D24(t)D?¢(t) T dt. (10)
Generally, the rougher the curve is, the larger curvature it tends
to have. The smoothing parameter A controls the scale of rough-
ness penalty that will be put on and thus controls the smoothness
(or roughness) of the curve. By combining (7), (8), and (9), the
PENSSE can be expressed in the form of vectors as
PENSSE, = (7 — ®&)T(§ — ®&) + A\é' Re.  (11)
The estimate of the coefficients ¢ can be obtained by setting the
derivative of PENSSE with respect to ¢ to be zero
= (8T® + AR) 10Ty (12)
From (4) and (12), the fitted value vector gj’ (i.e., estimated values
for observations i = (y1, ..., Yn)) is computed by

j=0=0(®7Td + AR) BTy, (13)
or
=Sy (14)
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where

S=o(®"d+ A\R)"'@T. 15)
S is referred to as a hat matrix, as it converts the dependent
variable vector ¢/ into its fitted value 4. The hat matrix S in (14)
plays the role of the weight functions {W;(¢)}?; in (2). The
number of degrees of freedom of the fit is the trace of the hat
matrix

df = trace(S5). (16)
In linear algebra, the trace of an n-by-n square matrix A is the
sum of the diagonal elements of A. The degrees of freedom will
be used in calculating the confidence interval in Section I'V-A.

C. Kernel Smoothing

In Kernel smoothing, the shape of the weight function W (t)
in (2) is described by a density function (Kern) called a kernel
(e.g., a normal distribution density function) [19]. The weight
sequence {W;(¢)}"_; is defined by

Kerny, (t — t;)

VV’l(t) = n_l Z?:l Kernh(t — tl) (17)
where
Kerny (t) = +Kern ( (19
erny = h, ern h

is the kernel with the scale factor h. A well-accepted kernel
estimator is the Nadaraya—Wastson estimator

o Y Kerny (t —

(1) = ti)yi

. 19
n=1 Y Kerny(t —t;) (19)

The shape of the weights is determined by Kern and the size
of the weights is parameterized by h, which is called the band-
width. In our case, Kern is chosen to be the probability density
function of the standard normal distribution

1 1,2
me*if (20)

such that Kerny, is the density function of a normal distribution
with amean of O and a yariance of h2. According to (2) and (17),
the fitted value vector 4j can be rewritten in the form of (14), i.e.,
iy = S/, where the hat matrix S is defined as

Kern(t) =

’fLilWl(tl) 7’L71W2(t1) n’1Wn(t1)
’I’Lilwl(tg) n71W2(t2) n’1Wn(t2)
nTIWi(t,) nTiWa(t,) n=IW,(t,)

21

where W;(t;) is the weight of observation at time ¢; for esti-
mating the data value at time ;. Again, the number of degrees
of freedom of the fit is computed by the trace of the hat matrix,
ie., (16).

The bandwidth A controls the roughness of the fitted curve.
This plays the same role as the smoothing parameter A does in
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the B-Spline smoothing. The larger the A is, the more neigh-
boring information is taken into account and the smoother the
fitted curve would be. For simplicity, both h and A will be re-
ferred to as the smoothing parameter.

IV. IMPLEMENTATION

The modeling methods for the underlying structure of a load
curve were presented in previous section. Two remaining issues
are how to detect corrupted data and how to set the parameters
in the model.

A. Confidence Interval

To detect corrupted data, the idea of the point-wise confidence
interval is utilized. An observation within the confidence in-
terval is considered normal and an observation outside the con-
fidence interval is considered corrupted. As mentioned earlier,
the error term ¢; in (1) is assumed to be normally and indepen-
dently distributed with the mean of zero and constant variance
o2. Under this assumption, the predicted confidence interval of a
data point can be computed by its estimated value plus or minus
a multiple of predicted errors. The estimated predicted errors is
given by [28]

si {pred} = MSE + 57(5:) (22)
where the MSE is the mean square error
1 n
MSE = —— i — 0i)? 2
n—df;(y ¥i) (23)

and s7(;) is the sampling variance to the fit at time ¢; and is
given by the entry (4,4) of the matrix Var[y]

Var[jj] = S * ST « MSE (24)

where S is the hat matrix introduced in Section III [20]. For the
given « significance level, the 100+ (1—«)% confidence interval
at time ¢; is estimated by

[9; — Z1—a/2 * s;i{pred}, g; + Zl—a/2 * si{pred}] (25)

where Z1_,5 is the 100 * (1 — a/2) percentile of the standard
normal distribution, which can be obtained by looking up from
a standard normal table. In the following experiment, the 0.05
significance level (o« = 0.05) is chosen and the corresponding
Z1_qay2 18 1.96. This means that a normal observation would fall
in the confidence interval with a probability of 95%, or equiv-
alently, the probability that a data point locates outside the in-
terval is corrupted is 95%.

B. K—The Number of Basis Functions

For the B-Spline smoothing introduced in Subsection IIL.B,
the number of basis functions, i.e., K, needs to be determined.
As we mentioned in the previous section, a larger K can make
the curve fit the actual data better, and also result in a higher
risk of overfitting and more computations. There is no gold cri-
terion for the selection of K [20]. One strategy is to only let
the smoothing parameter A control the smoothness of the curve.
The following rule is used in our study, which leads to good re-
sults: in modeling local patterns where only local data (e.g., data
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TABLE 1
INCREMENTAL TRAINING ALGORITHM

Algorithm Incremental Training (T, k)
Partition T into Ty, T>,...,Ty;
User_Label(T));

Labeled T « Ty;

j < 2; OSP « NaN;

While (User not satisfied And j < k)
OSP « Find_OSP (Labeled_T) ;
Smoothing (OSP, Tj);
User_Confirm (Tj);

9. Labeled_T <« Labeled_T U Tj;

10. it

11. End

12.  Unlabeled_T «— T — Labeled_T;

13.  Smoothing(OSP, Unlabeled T);

PN RN

of one week) is used, K is selected as the number of observa-
tions, whereas in modeling global trends where more data (e.g.,
data of a whole year) is considered, K is selected as large as the
computation allows.

C. Smoothing Parameter

For both B-Spline smoothing and Kernel smoothing, the
choice of the smoothing parameter depends not only on the
data but also on the type of patterns being modeled. If global
trends of a time series are focused, a relatively smoother fitted
curve with a larger smoothing parameter is preferred; if local
patterns are focused, a rougher curve with a relatively smaller
smoothing parameter will fit the data better. In the literature,
different criteria such as minimizing mean squared error, mean
integrated squared error (MISE), cross-validation error sum of
squares (CV), and generalized cross-validation error (GCV)
have been proposed to find an optimal smoothing parameter
[19], [20], [22]. Unfortunately, none of these guarantees to
produce the “best result” because ultimately it relies on the
user’s needs.

To address this issue, an incremental training algorithm is
proposed in this paper. The idea is to let the user label some
small portion of the data that is corrupted and using the la-
beled data to search for the “optimal” smoothing parameter. In
the process, care must be taken to minimize the user effort re-
quired for labeling the data. This algorithm is given in Table I.
The algorithm applies to both B-Spline smoothing and Kernel
smoothing. The range of the smoothing parameter is divided
into 10 different levels. For the B-Spline smoothing, for locally
corrupted data detection, the 10 levels are defined as

A=100-D/2=9" =112 ...10} (26)
and for globally corrupted data detection, they are
A=10"11 i={1,2,...,10}. (27)
For the Kernel Smoothing, these are defined as
h = (141i/2)*space, i=1{1,2,...,10} (28)

where the space is the normalized time lag between two data
points in the time series. The incremental training procedure is
as follows.
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Fig. 3. Local patterns and global patterns in load curve data. (a) Local patterns.

First, the length of the whole load time series T is divided
into k partitions T1,..., Tk (see Line 1 in Table I). Initially,
the user only needs to label the first partition T; (see Line 2).
A smoothing method (either B-Spline smoothing or Kernel
smoothing) presented in Section III runs on T; for each of the
predefined 10 smoothness levels to identify the trained optimal
smoothing parameter (denoted by OSP), which results in the
most accurate detection of the labeled corrupted data in the
first partition and is done by the function Find_OSP on Line
6 in Table I. Next, with this trained optimal smoothing pa-
rameter, the smoothing method runs to identify the candidates
of corrupted data in the second partition (see Line 7). These
candidates and smoothing results with the confidence interval
are then presented to the user for confirmation (see Line 8).
The user’s confirmation enables us to label the corrupted data
in the second partition. Thus, the labeled data is expanded by
one partition (see Line 9).

Till now, the first iteration is completed, in which the labeled
data in the first partition is utilized to help label the corrupted
data in the second partition. In each iteration, the trained op-
timal smoothing parameter OSP is updated by rerunning the
smoothing program on the labeled partitions, and the labeled
data is expanded by one partition (Lines 6-9). The training
process can be stopped at any iteration as long as the user is
satisfied with the accuracy of the current model. If the user
stops at the end of the jth run, the first (j + 1) partitions have
been labeled and the most updated trained optimal smoothing
parameter OSP will be used to construct the model to label the
remaining (k — j — 1) partitions (see Line 10 and 11).

The essence of the incremental training algorithm is the di-
alogue between human being and the computer program. The
initial labeling and feedback from the user provide the informa-
tion for the computer program to find a better smoothness level.
As more partitions are labeled, the updated model gradually be-
comes more robust. Another feature of this algorithm is that it
can be implemented in an online environment where data con-
tinuously arrives in real time since only one new partition of data
is required to process with the incremental training algorithm.

The incremental training algorithm in Table I is used mainly
for detecting locally corrupted data. To detect globally corrupted
data, the Smoothing(OSP, T;) is replaced with Smoothing(OSP,
T). In other words, the smoothing program runs on the whole
time series T. This change is necessary because modeling global
patterns requires the examination of the whole time series. How-
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ever, the user confirmation and labeling at Lines 8 and 9 are still
conducted on one partition at a time.

V. EXPERIMENTS

In this section, the proposed solution is tested. The real load
data from BCTC was used for our experimental evaluation. The
data set includes hourly residential energy consumption in a cer-
tain area for the five years from April 2004 to March 2009.
Fig. 3(a) shows the data in one week and Fig. 3(b) shows five-
year data distribution. The data exhibits both local patterns (by
day) and global patterns (by year).

For both locally and globally corrupted data detection, we
follow the same experiment procedure. First, the incremental
training process described in Table I is carried out to obtain
the trained optimal smoothing parameter. The data used in
this training process is called the training data set. Second,
the smoothing method with the trained optimal smoothing
parameter runs on a separate prelabeled festing data set for
accuracy evaluation. The testing data set simulates the data
on which the user wants to detect corrupted data except that
the labeling would not be available in real applications. The
standard precision (P), recall (R), and F-measure (F) are used
as the accuracy metrics. Precision is the percentage of correctly
detected corrupted regions with regard to the total detected
regions; recall is the percentage of correctly detected regions
with regard to prelabeled corrupted regions; the F-measure is a
harmonic mean of precision and recall, i.e.,

e 2 x precision * recall

29
precision + recall 29

A larger F-measure indicates more accurate detection.

A. Detecting Locally Corrupted Data

To facilitate the evaluation for locally corrupted data detec-
tion, 25 weeks’ data was selected from the five-year BCTC data
with 168 hourly data points per week. For simplicity, each cor-
rupted data point was considered as one region. The data in the
first 12 weeks was used to carry out the incremental training
following the procedure in Table I where the data in each week
was treated as one partition T;. The trained optimal smoothing
parameter (OSP) was obtained from the incremental training
process. The data in the remaining 13 weeks served as the testing
data for evaluation, in which all corrupted data points were man-
ually labeled in advance. The model on the testing data was con-
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TABLE II
LocALLY CORRUPTED DATA DETECTION RESULTS

B-Spline Smoothing Kernel Smoothing
Level P R F Level P R F

1 53% 74% 0.62 1 55% 74% 0.63
2 50% 70% 0.58 2 67% 78% 0.72
3 52% 70% 0.59 3 71% 74% 0.72
4 52% 70% 0.59 **4 90% 78% 0.84
S 73% 70% 0.71 S 89% 74% 0.81
*%6 86% 78% 0.82 *6 94% 74% 0.83
< 85% 74% 0.79 7 94% 74% 0.83
8 78% 61% 0.68 8 88% 65% 0.75
82% 61% 0.7 9 88% 65% 0.75

10 81% 57% 0.67 10 88% 61% 0.72

structed using the OSP obtained from the incremental training
process. The precision, recall and F-measure were recorded. For
comparison, the other 9 predefined smoothness levels were also
tested on the testing data. The results produced by all 10 smooth-
ness levels are shown in Table II.

In Table II, the left half shows the results obtained by using
B-Spline smoothing and the right half shows those obtained
by using Kernel smoothing. The “Level” column represents the
smoothness level, with 1 being the least smooth and 10 being
the smoothest; the “P” column represents precision; the “R”
column represents recall; the “F” column represents F-measure.
The row with * shows the result produced by the trained optimal
smoothing parameter, whereas the row with *x shows the best
result that can be produced by any of the 10 predefined smooth-
ness levels. It can be seen from Table II that the trained optimal
smoothing parameter (labeled by *) produces the result that is
very close to the best one (labeled by xx). It is believed that the
difference will be even smaller if more prelabeled data for both
training and testing are used.

It can be observed that as the smoothness level increases, the
F-measure increases and reaches the peak, and then begins to
decrease. To understand this behavior, the fitted curve and con-
fidence interval produced by the B-Spline smoothing for one
week’s testing data at the smoothness level 1, 6, and 10 are pre-
sented in Fig. 4. The solid line with points represents real obser-
vations, the dashed line with points represents the fitted curve,
and the dashed lines without points represent the upper bound
and lower bound of the confidence interval. Fig. 4(a) shows the
raw data with 5 labeled locally corrupted data points. When the
smoothing parameter is selected at Level 1 (least smooth), as
shown in the Fig. 4(b), the curve tends to fit both normal data
and corrupted data. When the smoothing parameter increases
to Level 6, indicated in Fig. 4(c), the curve becomes to reveal
the real local patterns of the data and filter out corrupted data.
Fig. 4(d) indicates that an overly smooth curve fails to iden-
tify some corrupted data because of failure to model the local
patterns.

A closer look reveals the following interesting behaviors of
precision and recall with respect to different smoothness levels.
The precision metric largely increases as the fitted curve gets
smoother (i.e., at a higher smoothness level). This increase is

contributed by the decrease of the number of wrongly detected
corrupted data. As a matter of fact, a smoother curve causes
more fitting errors, thus, alarger MSE and a wider confidence in-
terval. In this case, fewer data points fall outside the confidence
interval and these data points are most likely true corrupted data.
Therefore, a higher smoothness level helps increase the preci-
sion metric.

In contrast, the recall metric behaves differently. When the
smoothing parameter is set at a low smoothness level, the curve
is rough and tends to overfit the data. In this case, the recall
metric is low because corrupted data is also fitted instead of
being detected. As the smoothness level increases, the curve
is getting smoother and gradually approximating the intrinsic
structure of the real data, thus, more abnormal deviations from
the function are detected. After reaching the “peak point” (i.e.,
Level 6 for the B-Spline smoothing and Level 4 for the Kernel
smoothing), further increasing smoothness level produces an
overly smooth curve, thus, a large MSE. This causes a too wide
confidence interval that fails to exclude the corrupted data and
therefore leads to a decrease of the recall metric.

B. Detecting Globally Corrupted Data

A globally corrupted region is a region that includes a group
of nearby corrupted data. For globally corrupted data detection,
the data in all the five years was considered. The data in the
first two years was used as training data and the rest three-year
data was used as testing data. Fifteen globally corrupted regions
in the testing data were manually prelabeled. The incremental
training algorithm ran on the training data to obtain the trained
optimal smoothing parameter (OSP). Then the smoothing pro-
gram was carried out on the testing data with the OSP. The re-
sults using the B-Spline smoothing are shown in Fig. 5. The
circles in Fig. 5(a) represent prelabeled globally corrupted re-
gions in the three-year testing data; the circles in Fig. 5(b) and
(c) represent correctly detected corrupted regions; the rectangles
represent corrupted regions that were not detected.

In Fig. 5(b), the fitted curve and confidence interval pro-
duced by the OSP (Level 7) are presented. As showed, 14 out
of 15 globally corrupted regions are detected. For comparison,
Fig. 5(c) gives the result with the smoothness Level 4, in which
only 5 out of 15 are correctly detected.
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Fig. 4. Locally corrupted data detection—B-Spline smoothing. (a) Real obser-
vations with 5 corrupted data points in circles. (b) Result for smoothness Level
1. (¢) Result for smoothness Level 6. (d) Result for smoothness Level 10.

As expected, when the smoothing parameter is at a low
smoothness level, such as in Fig. 5(c), the curve tends to model
too much detailed information or local patterns. As a result,
globally corrupted data is fitted as normal observations rather
than being detected. In contrast, when the curve becomes
smoother, as modeled in Fig. 5(b), the performance improves
accordingly as the local information is ignored and more gen-
eral data behaviors are modeled. Compared to locally corrupted
data detection, a higher smoothness level (i.e., a smoother
curve) is usually preferred to detect globally corrupted data.
It is also interesting to note that the smoother fitted curve in
Fig. 5(b) correctly preserves the global trends exhibited by the
annual seasonality.
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Fig. 5. Globally corrupted data detection for the three-year testing data. The
predefined 10 smoothness levels are different in locally and globally corrupted
data detection (refer to Section IV-C). (a) Three-year testing data with 15 glob-
ally corrupted regions. (b) B-Spline smoothing result with smoothness Level 7.
(c) B-Spline smoothing result with smoothness Level 4.

VI. CONCLUSION

Load curve data is noisy and contains corrupted data. De-
tecting and correcting the corrupted data in load curves is the
first step for further data analysis and is particularly important
for the smart grid that will be in place in the future. In this paper,
this problem is addressed as load cleansing problem. A practical
solution based on well founded nonparametric regression tech-
niques has been presented. The solution handles both locally
corrupted data and globally corrupted data in a uniform way
through the setting of a single smoothing parameter. A chal-
lenge in implementation is how to determine the best smooth-
ness level for the smoothing parameter, which ultimately re-
quires user involvement. One novelty of the presented solution
is taking into account of user input while minimizing user ef-
fort. The user effort is minimized by performing the proposed
smoothing methods incrementally in multiple runs so that the
user can provide input based on partial results in previous runs.
The automatic detection and the user input form a man—machine
dialogue mechanism where each does its utmost. This greatly
improves the overall performance. The evaluation on the real
BCTC load curve data demonstrated the effectiveness of the pre-
sented solution. Although this paper focuses on load curve data
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for electric utilities, we believe that our solution is equally ap-
plicable to time series data in other domains.
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